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Trade-Off Sample Size:  
How Low Can We Go? 
 

Abstract 

 

The effect of sample size on model error is examined through several commercial data sets, using 

five trade-off techniques: ACA, ACA/HB, CVA, HB-Reg and CBC/HB.  Using the total sample 

to generate surrogate holdout cards, numerous subsamples are drawn, utilities estimated and 

model results compared to the total sample model.  Latent class analysis is used to model the 

effect of sample size, number of parameters and number of tasks on model error. 

Introduction 

Effect of sample size on study precision is always an issue to commercial market researchers.  

Sample size is generally the single largest out-of-pocket cost component of a commercial study.  

Determining the minimum acceptable sample size plays an important role in the design of an 

efficient commercial study. 

For simple statistical measures, such as confidence intervals around proportions estimates, the 

effect of sample size on error is well known (see Figure 1).  For more complex statistical 

processes, such as conjoint models, the effect of sample size on error is much more difficult to 

estimate.  Even the definition of error is open to several interpretations. 

Figure 1. 
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Many issues face practitioners when determining sample size: 

• Research objectives 

• Technique 

• Number of attributes and levels 

• Number of tasks 

• Expected heterogeneity 

• Value of the information 

• Cost and timing 

• Measurement error 

• Structure and efficiency of experimental design: 

- Fixed designs 

- Blocked designs 

- Individual-level designs 

Some of these issues are statistical in nature, such as number of attributes and levels, and some of 

these issues are managerial in nature, such as value of the information, cost and timing. The 

commercial researcher needs to address both types of issues when determining sample size. 

 

Objectives 

The intent of this paper is to examine a variety of commercial data sets in an empirical way to see 

if some comments can be made about the effect of sample size on model error. Additionally, the 

impact of several factors: number of attributes and levels, number of tasks and trade-off 

technique, on model error will also be investigated. 

Method 

For each of five trade-off techniques, ACA, ACA/HB, CVA, HB-Reg, and CBC/HB, three 

commercial data sets were examined (the data sets for ACA, and CVA also served as the data sets 

for ACA/HB and HBReg, respectively). Sample size for each data set ranged between 431 and 

2,400.  

 

Since these data sets were collected from a variety of commercial marketing research firms, there 

was little control over the number of attributes and levels or the number of tasks. Thus, while 

there was some variation in these attributes, there was less experimental control than would be 

desired, particularly with respect to trade-off technique.  

Table 1. 

  
Attr 

 
Lvls 

 
Pars 

 
Tasks 

 
df 

 
SS 

CBC/HB 
            

Data Set 1 
 

4 
 

14 
 

11 
 

8 
 

-3 
 

612 

Data Set 2 
 

6 
 

17 
 

12 
 

18 
 

+6 
 

422 

Data Set 3 
 

5 
 

25 
 

21 
 

12 
 

-9 
 

444 

CVA,HB-Reg 
            

Data Set 1 
 

6 
 

24 
 

19 
 

30 
 
+11 

 
2,400 

Data Set 2 
 

4 
 

9 
 

6 
 

10 
 

+4 
 

431 

Data Set 3 
 

6 
 

13 
 

8 
 

16 
 

+8 
 

867 

ACA,ACA/HB 
            

Data Set 1 
 

25 
 

78 
 

54 
     

782 

Data Set 2 
 

5 
 

24 
 

20 
     

500 

Data Set 3 
 

17 
 

63 
 

47 
     

808 
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Notice in Table 1 above that the number of parameters and number of tasks are somewhat 

correlated with trade-off technique. CBC/HB data sets tended to have fewer degrees of freedom 

(number of tasks minus the number of parameters) than CVA data sets. ACA data sets had a much 

greater number of parameters than either CBC/HB or CVA data sets. These correlations occur 

quite naturally in the commercial sector. Historically, choice models have been estimated at the 

aggregate level while CVA models are estimated at the individual level. By aggregating across 

respondents, choice study designers could afford to use fewer tasks than necessary for estimating 

individual level conjoint models. Hierarchical Bayes methods allow for the estimation of 

individual level choice models without making any additional demands on the study's 

experimental design. A major benefit of ACA is its ability to accommodate a large number of 

parameters. 

For each data set, models were estimated using a randomly drawn subset of the total sample, for 

the sample sizes of 200, 100, 50 and 30. In the cases of ACA and CVA, no new utility estimation 

was required, since each respondent's utilities are a function of just that respondent. However, for 

CBC/HB, HB-Reg and ACA/HB, new utility estimations occurred for each draw, since each 

respondent's utilities are a function of not only that respondent, but also the "total" sample. For 

each sample size, random draws were replicated up to 30 times. The number of replicates 

increased as sample size decreased. There were five replicates for n=200, 10 for n=100, 20 for 

n=50 and 30 for n=30. The intent here was to stabilize the estimates to get a true sense of the 

accuracy of models at that sample size. 

Since it was anticipated that many, if not all, of the commercial data sets to be analyzed in this 

paper would not contain holdout choice tasks, models derived from reduced samples were 

compared to models derived from the total sample. That is, in order to evaluate how well a 

smaller sample size was performing, 10 first choice simulations were run for both the total sample 

model and each of the reduced sample models, with the total sample model serving to generate 

surrogate holdout tasks. Thus, MAEs (Mean Absolute Error) were the measure with which models 

were evaluated (each sub-sample model being compared to the total sample model). 990 models 

(5 techniques x 3 data sets x 66 sample sizes/replicate combinations) were estimated and 

evaluated. 9,900 simulations were run (990 models x 10 simulations) as the basis for the MAE 

estimations.  

 

Additionally, correlations were run, at the aggregate level, between the mean utilities from each of 

the sub-sample models and the total sample model. Correlation results were reported in the form 

100 * (1-rsquared), and called, for the duration of this paper, mean percentage of error (MPE). 

It should be noted that there is an indeterminacy inherent in conjoint utility scaling that makes 

correlation analysis potentially meaningless. Therefore, all utilities were scaled so that the levels 

within attribute summed to zero (effects coding). This allowed for meaningful correlation analysis 

to occur. 

Sample Bias Analysis  

Since each subsample was being compared to a larger sample, of which it was also a part, there 

was a sample bias inherent in the calculation of error terms. 

Several studies using synthetic data were conducted to determine the magnitude of the sample 

bias and develop correction factors to adjust the raw error terms for sample bias. 
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Sample Bias Study 1  

For each of four different scenarios, random numbers between 1 and 20 were generated 10 times 

for two data sets of sample size 200. In the first scenario, the first 100 data points were identical 

for the two data sets and the last 100 were independent of one another. In the second scenario, the 

first 75 data points were identical for the two data sets and the last 125 were independent of one 

another. In the third scenario, the first 50 data points were identical for the two data sets and the 

last 150 were independent of one another. And in the last scenario, the first 25 data points were 

identical for the two data sets and the last 175 were independent of one another. 

The correlation between the two data sets, r, approximately equals the degree of overlap, n/N, 

between the two data sets (Table 2).  

Table 2. 

  N=200     

  n= 100 75 50 25 

   0.527451 0.320534 0.176183 0.092247 

   0.474558 0.411911 0.255339 0.142685 

   0.61104 0.3109 0.226798 0.11125 

   0.563223 0.287369 0.223945 0.194286 

   0.487692 0.398193 0.368615 0.205507 

   0.483789 0.47338 0.229888 -0.09505 

   0.524381 0.471472 0.288293 0.250967 

   0.368708 0.274371 0.252346 0.169203 

   0.446393 0.401521 0.245936 0.109158 

   0.453217 0.389331 0.139375 0.184337 

       

  r= 0.494045 0.373898 0.240672 0.136459 

  n/N = 0.5 0.375 0.25 0.125 

 

Sample Bias Study 2 

To extend the concept further, a random sample of 200 was generated, a second sample of 100 

was created where each member of the second sample was equal to a member of the first sample 

and a third sample of a random 100 was generated, independent of the first two. 

For each of the three samples, the mean was calculated. This process was replicated 13 times and 

the mean data are reported below (Table 3). 
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The absolute difference (MAE) between the first two data sets is 0.147308 and the absolute 

difference between the first and third data sets is 0.218077. By dividing the MAE for the first two 

data sets by the finite population correction factor (sqrt(1-n/N)), the MAEs become quite similar. 

Table 3. 

  
 

N=200 n=100 n=100 

  
 

11.075 11.18 9.54 

  
 

10.275 10.15 11.15 

  
 

10.85 11.15 10.62 

  
 

10.595 10.51 10.81 

  
 

9.99 9.92 10.88 

  
 

9.735 10.11 11.19 

  
 

10.555 11.3 11.43 

  
 

11.44 11.68 10.88 

  
 

10.41 10.33 9.37 

  
 

10.13 10.55 10.87 

  
 

10.34 9.84 11.23 

  
 

10.295 10.86 11.46 

  
 

10.855 10.88 9.95 

  
 

10.50346 10.65077 10.72154 

  
    

  MAE 
 

0.147308 0.218077 

  MAE/sqrt(1-n/N)= 0.208325 
 

 

Sample Bias Study 3 

To continue the extension of the concept, a random sample of 200 was generated, a second 

sample of 100 was created where each member of the second sample was equal to a member of 

the first sample and a third sample of a random 100 was generated. 

The squared correlation was calculated for the first two samples and for the first and third 

samples. This procedure was replicated 11 times. The 11 squared correlations for the first two 

samples were averaged as were the 11 squared correlations for the first and third samples. 

MPEs were caculated for both mean r-squares (Table 4). The MPE for the first two sample is 

substantially smaller than the MPE for the first and third samples. By dividing the MPE for the 

first two samples by the square of the finite population correction factor (1-n/N), the MPEs 

become quite similar. 
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Note that it is somewhat intuitive that the correction factor for the MPEs is the square of the 

correction factor for the MAEs. MPE is a measure of squared error whereas MAE is a measure of 

first power error. 

Table 4. 

  ns=100 n(R)=100 

 rsq= 0.603135 0.099661 

 rsq= 0.648241 0.048967 

 rsq= 0.357504 0.11173 

 rsq= 0.30337 0.099186 

 rsq= 0.790855 0.178414 

 rsq= 0.883459 0.379786 

 rsq= 0.829014 0.182635 

 rsq= 0.477881 0.27063 

 rsq= 0.798317 0.010961 

 rsq= 0.425018 0.462108 

 rsq= 0.785462 0.003547 

 average rsq= 0.627478 0.167966 

 MPE= 37.25222 83.2034 

 MPE/(1-n/N)= 74.50445  

 

Sample Bias Study 4 

Finally, the synthetic data study below involves more closely replicating the study design used in 

this paper. 

Method 

The general approach was: 

• Generate three data sets 

- Each data set consists of utility weights for three attributes 

- Utility weights for the first and third data sets are randomly drawn integers 

between 1 and 20 

- Sample size for the first data set is always 200 

- Sample size for the second and third data sets varies across 25, 50 and 100 

- The second and third data sets always are of the same size 

- The second data set consists of the first n cases of the first data set, where n = 25, 

50 or 100 

• Define either a two, three, four or five product scenario 
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• Estimate logit-based share of preference models for each of the three data sets, 

calculating shares at the individual level, then averaging 

• Calculate MAEs for each of the second and third data sets, compared to the first, at the 

aggregate level 

• Calculate MPEs (mean percent error = (1- rsq(utils-first data set, utils-other data 

set))*100) for each of the second and third data sets, compared to the first, at the 

aggregate level 

• Redraw the sample 50 times for each scenario/sample size and make the above 

calculations 

• Calculate mean MAEs and MPEs for each of 50 random draws for each model 

• 36 models (3 data sets x 4 market scenarios x 3 sample sizes)  

Note: Empirically, the ratio of random sample MAE to overlapping sample MAE equals the scalar 

that corrects the overlapping sample MAE for sample bias. Similarly for MPE. The issue, then, is 

to develop a formula for the correction factor that closely resembles the ratio of random sample 

error/overlapping sample error. 

Conclusion 

As suggested by Synthetic Data Study 2, the formula (1/(1-percent overlap))^0.5 may represent 

the desired scalar for correction for MAE. Similarly, as suggested by Synthetic Data Study 3, the 

formula 1/(1-percent overlap) may represent the desired scalar for correction for MPE: 

Table 5. 

MAE   

Percent Overlap  (1/1-%overlap)^0.5 random/overlap 

12.5%  (n=25) 1.07 1.17 

25% (n=50) 1.15 1.32 

50% (n=100) 1.41 1.56 

MPE   

Percent Overlap  1/1-%overlap random/overlap 

12.5% (n=25) 1.14 1.18 

25% (n=50) 1.33 1.84 

50% (n=100) 2.00 2.95 
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Figure 2. 

 

 

Figure 3. 

 

 

Additional conclusions: 

• There is a definite bias due to overlapping sample, both in MAE and MPE. 

• This bias appears to be independent of the number of products in the simulations (see 

Tables 6 and 7). 

• The bias is directly related to the percent of the first data set duplicated in the second. 

• The amount of bias is different for MAE and MPE. 
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Table 6. 

MAE 

      

 

two products three products four products five products 

 

mean 

n=25 0.077167327 0.065818796 0.04373055 0.03523201 

 

0.055487 

n=R25 0.081864359 0.078921973 0.05091588 0.04456126 

 

0.064066 

n=50 0.041639879 0.046603952 0.0292088 0.02401724 

 

0.035367 

n=R50 0.057030973 0.057865728 0.03926258 0.03140596 

 

0.046391 

n=100 0.02421646 0.024658317 0.01847943 0.01383198 

 

0.020297 

n=R100 0.033042464 0.040345804 0.02954819 0.02281538 

 

0.031438 

 

Table 7. 

MPE 

      

 

two products three products four products five products 

 

mean 

n=25 0.70718724 0.687751783 0.85695737 0.664759341 

 

0.729164 

n=R25 0.785403871 0.870813277 0.869094024 0.88440592 

 

0.852429 

n=50 0.242856551 0.312908934 0.292542572 0.246179851 

 

0.273622 

n=R50 0.437063715 0.554906027 0.453530099 0.552845437 

 

0.499586 

n=100 0.094198823 0.096766941 0.123103025 0.099623936 

 

0.103423 

n=R100 0.281835972 0.335639163 0.490892078 0.296887426 

 

0.351314 

 

Sample Size Study Results 

Referring to the error curve for proportions once again (Figure 1), a natural point to search for in 

the error curve would be an elbow. An elbow would be a point on the curve where any increase in 

sample size would result in a declining gain in precision and any decrease in sample size would 

result in an increasing loss in precision. This elbow, if it exists, would identify the maximally 

efficient sample size. 

Visually, and intuitively, an elbow would appear as noted in Figure 4. 

  



 

 

 

 

  

               

Tr
ad

e-
O

ff
 S

tu
d

y 
Sa

m
p

le
 S

iz
e:

 H
o

w
 L

o
w

 C
an

 W
e 

go
? 

 

10 

T E L  6 5 0 . 8 2 3 . 3 0 4 2  w w w . m a c r o i n c . c o m  

Figure 4. 

 

To formally identify an elbow, one would need to set the third derivative of the error function to 

zero. It is easy to demonstrate that, for the proportions error curve, the third derivative of the error 

function cannot be zero. Therefore, for a proportions error curve, an elbow does not exist. 

Below in Figure 5 and in Figure 7, the error curves for both the MAE and MPE error terms have 

been plotted for the aggregate data, that is, for all five techniques averaged together. In Figures 6 

and 8, the error curves for each trade-off technique has been plotted separately. 

The MAE curves are all similar in shape to one another as are the MPE curves. 

Visually, the MAE curves appear to be proportionate to 1/sqrt(n) and the MPE curves appear to 

proportionate to 1/n. By regressing the log of the error against the log of sample size it can be 

confirmed that the aggregate MAE is indeed proportionate to 1/sqrt(n) and the aggregate MPE 

proportionate to 1/n (coefficients of –0.443 and –0.811, respectively). 

The third derivative of both 1/sqrt(n) and 1/n can never equal zero. Therefore, neither of these 

error curves can have an elbow. 

Figure 5.
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Figure 6. 

 

Figure 7. 
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Figure 8. 

 

Using the aggregate MAE and MPE curves as surrogate formulae, tables of error terms as a 

function of sample size have been constructed below. Given that no elbow exists for these curves, 

it is left to the researcher, just as it is with proportions curves, to determine the level of error that 

is acceptable. 

There is substantial increase in precision (or decrease in error) when increasing sample from 30 to 

50, both for MAE and MPE. There is also substantial increase in precision in terms of both MAE 

and MPE when increasing sample size from 50 to 75. However, the amount of increased precision 

may become less relevant to many commercial studies when increasing sample size beyond 75 or 

100. 

Table 8. 

Estimated MAE by Sample Size 

Sample Size      MAE 

30  5.8 

50  4.6 

75  3.9 

100  3.5 

125  3.2 

150  3.0 

175  2.7 

200  2.5 
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Table 9. 

Estimated MPE by Sample Size 

Sample Size    MPE 

30  6.4 

50  3.9 

75  2.7 

100  2.0 

125  1.6 

150  1.4 

175  1.2 

200  1.0 

A careful review of Figures 6 and 8 will reveal a pattern of error terms which might suggest that 

certain trade-off techniques generate lower or higher model error terms than others. This 

conclusion, at least based on the data presented here, would be false. Each error term is based on 

total sample utilities computed with a given trade-off technique. Thus, for example, the CVA 

MPE at a sample size of 100 is determined by taking the CVA-generated mean utilities from the 

five replicates of the 100 subsample and correlating them with the CVA-generated mean utilities 

for the total sample. Similarly, for HB-Reg, the subsample mean utilities are correlated with the 

total sample mean HB-Reg utilities. Even though the underlying data are exactly the same, MPEs 

for the CVA subsamples are based on one set of “holdouts” (total sample CVA-based utilities) 

while the MPEs for the HB-Reg subsamples are based on an entirely separate and different set of 

“holdouts” (total sample HB-Reg-based utilities). Because the reference points for calculating 

error are not the same, conclusions contrasting the efficiency of the different trade-off techniques 

cannot be made. 

To illustrate how different the total sample models can be, MAEs were calculated comparing the 

total sample CVA-based models with the total sample HB-Reg-based models for three data sets. 

 MAE 

Data set 1 7.7 

Data set 2 6.5 

Data set 3 6.7 

These MAEs are larger than most of the MAEs calculated using much smaller sample sizes. Thus, 

while we cannot compare error terms as calculated here, we can conclude that different trade-off 

techniques can generate substantially different results. 

Having said the above, it is still interesting to note that both the ACA and ACA/HB utilities and 

models showed remarkable stability at low sample sizes despite the burden of a very large number 

of parameters to estimate; much larger number of parameters than any of the other techniques. 
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Latent Class Models 

The above analysis is based upon a data set of 1,950 data points, 975 data points for each error 

term, MAE and MPE. Excluding ACA data, there were 585 data points for each error term. 

Latent Class models were run on these data to explore the impact on model error of sample size, 

number of attributes and levels (expressed as number of parameters) and number of tasks. ACA 

data were excluded from the latent class modeling because of the fundamentally different nature 

of ACA to CVA and CBC. 

A variety of model forms were explored, beginning with the simplest, such as error regressed 

against sample size. The models that yielded the best fit were of the form: 

MAE = k*(sqrt(Pc/(na*Tb))) 

 and 

MPE = k*Pc/(na*Tb) 

Where P is the number of parameters, n is sample size, T is number of tasks and k, c, a and b are 

coefficients estimated by the model. 

The k coefficient in the MAE model was not significantly different from 1 and therefore 

effectively drops out of the equation. 

For both the MAE and MPE models, latent class regressions were run for solutions with up to 12 

classes. In both cases, the two class solution proved to have the optimal BIC number. 

Also in both models, sample size (n) and number of tasks (T) were class independent while 

number of parameters was class dependent. In both models, all three independent variables were 

highly significant. 

It is interesting to note that the most effective covariate attribute was, for the MAE model, trade-

off technique (CBC/HB, CVA, HB-Reg). In that model, CBC/HB data points and HB-Reg data 

points tended to be members of the same class while CVA data points tended to be classified in 

the other class. 

For the MPE model, the most effective covariate was data type (CBC, CVA), which would, by 

definition group CVA data points and HB-Reg data points together, leaving CBC/HB data points 

in the other class. 
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Table 10. 

MAE 2-Latent Class Model Output 

Latent Variable(s)  (gamma) 

     

 

 Class1 Class2 Wald p-value 

  Intercept  -0.0395 0.0395 0.0119 0.91 

  Covariates  Class1 Class2 Wald p-value 

  Technique  

      CBC/HB  0.9122 -0.9122 7.9449 0.019 

  CVA  -1.8192 1.8192 

    HB-Reg  0.907 -0.907 

    

 

 

      Dependent Variable  (beta) 

     

 

 Class1 Class2 Wald p-value Wald(=) p-value 

logAdjVal  

      

 

 1.5988 1.2358 905.8524 2.00E-197 3.77E+01 8.30E-10 

Predictors  

      logn  

      

 

 -0.4166 -0.4166 481.2585 1.10E-106 0.00E+00 . 

logT  

      

 

 -0.2255 -0.2255 41.0711 1.50E-10 0.00E+00 . 

logP  

      

 

 0.1471 0.3588 62.4217 2.80E-14 14.2287 0.00016 

 

 

      

 

 Class1 Class2 

    Class Size  0.5751 0.4249 
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Table 11. 

MPE 2-Latent Class Model Output 

Latent Variable(s)  (gamma) 

     

 

 Class1 Class2 Wald p-value 

  Intercept  1.0976 -1.0976 4.7383 0.03 

  

 

 

      Covariates  Class1 Class2 Wald p-value 

  DataType  

      CBC  1.2901 -1.2901 6.6741 0.0098 

  CVA  -1.2901 1.2901 

    

 

 

      Dependent Variable  (beta) 

     

 

 Class1 Class2 Wald p-value Wald(=) p-value 

logAdjVal  

      

 

 0.7849 2.9455 575.3608 1.20E-125 252.1947 8.60E-57 

Predictors  

      logP  

      

 

 2.0587 0.1556 499.858 2.90E-109 186.1446 2.20E-42 

logT  

      

 

 -0.7422 -0.7422 79.3514 5.20E-19 0 . 

logn  

      

 

 -0.9422 -0.9422 467.1816 1.30E-103 0 . 

 

 

      

 

 Class1 Class2 

    Class Size  0.6005 0.3995 

    
 

Conclusions 

Minimum sample size must be determined by the individual researcher, just as is the case with 

simple proportions tests. There is no obvious “elbow” in the error curve which would dictate a 

natural minimum sample size. 
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However, using the aggregate error tables as a guide, sample sizes of approximately 75 to 100 

appear to be sufficient to provide reasonably accurate models. Larger sample sizes do not provide 

a substantial improvement in model error. If fact, sample sizes as low as 30 provided larger but 

not unreasonable error terms, suggesting that, in some instances, small sample sizes may be 

appropriate. 

These data do not suggest that sample size needs to be larger for any trade-off technique relative 

to the others. Specifically, HB methods do not appear to require greater sample size than 

traditional methods. 

In addition to sample size, both the number of tasks and the number of parameters being estimated 

play a significant role in the size of model error. An obvious conclusion from this finding is that 

when circumstances dictate the use of small sample sizes, the negative effects on model precision 

can be somewhat offset by either increasing the number of tasks and/or decreasing the number of 

parameters estimated. 

These results appear consistent for both error terms calculated for this study: MAE and MPE. 

Discussion 

There are many aspects of this study which could be improved in future research. The inclusion of 

more data points would provide better estimates of the shape of the error curve. More replicates at 

lower samples sizes would provide more stability. MSE (Mean Squared Error) could be included 

as an additional error term that may prove to be more sensitive than MAE.  

The most serious limitation to this paper is the absence of objective standards, that is, holdout 

cards. Ideally, holdout cards and also attributes and levels would be identical across trade-off 

techniques. This would require custom designed studies for the purpose of sample size research. 

An alternative to funding fieldwork for a non-commercial study would be to construct synthetic 

data sets based on the means and covariances of existing, commercial data sets. If the synthetic 

data sets were constructed, the sample bias problem would be eliminated, a variety of sample 

sizes could be independently drawn and attribute collinearities, which commonly exist in 

commercial data sets, would be maintained. 

There are other factors that may affect model error. The number of tasks may have a non-linear 

relationship to model error. Increasing the number of tasks increases the amount of information 

available to estimate the model. Excessive number of tasks, however, may increase respondent 

fatigue to the point of offsetting the theoretical gain in information. Many aspects of measurement 

error, such as method of data collection (online vs telephone vs mall intercept), use of physical or 

visual exhibits, interview length, level of respondent interest, etc. may all play a role in model 

error that could affect the ultimate decision regarding sample size.  

The ultimate question that remains unanswered is, what is the mathematics behind model error? If 

a formula could be developed, as exists for proportions, researchers could input various study 

parameters, such as number of tasks, number of parameters, sample size, etc. and chart the error 

term by sample size. They could then make an informed decision, weighing both the technical and 

managerial aspects, and select the sample size most appropriate for that situation. 
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positive impact on the profitability of our clients.   

 

 

 

 

 

 

 

 

CONTACT US: 

Telephone: 650-823-3042 

 General Inquiries:  
info@macroinc.com 

 
Advanced Analysis Inquiries:  

analysis@macroinc.com 
 

richard@macroinc.com 
 

www.macroinc.com 

 


